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ABSTRACT 

A simple algorithm for the in-flight determination of the magnetic bias of a spacecraft is presented. 
The algorithm, developed for use during the Hubble Space Telescope mission, determines this bias 
independently of any attitude estimates and requires no spacecraft sensor data other than that from 
the spacecraft magnetometer(s). Estimates of the algorithm's accuracy and results from a number 
of numerical studies on the use of this algorithm are also presented. 

I. INTRODUCTION 

The determination of the magnetic bias of a spacecraft before launch can be quite difficult, 
particularly if the spacecraft is fairly large. The lack of such a bias determination can severely 
restrict the usefulness of onboard magnetometers in measuring the ambient magnetic field and thus 
also in determining spacecraft attitude. Attitudes based on magnetometer data are often the first to 
be determined during a spacecraft's mission. Having an algorithm that can determine the spacecraft 
magnetic bias at the location of each magnetometer without requiring knowledge of the spacecraft 
attitude is therefore desirable. We present here a simple algorithm that fulfills this need. The 
algorithm, developed specifically for the Hubble Space Telescope (HST) mission, requires no 
spacecraft sensor data other than that from the spacecraft magnetometer(s). The only other required 
input data are magnetic field values from a data base geomagnetic field model. Section 11 of this 
article presents the algorithm; Section 111, an analytical error model; Section IV, numerical examples 
of the use of the algorithm; and Section V, our conclusions. 
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11. MAGNETIC BIAS DETERMINATION ALGORITHM 

The spacecraft magnetic bias, D, at the location of an onboard magnetometer is related to the 
measured magnetic field, M, and the local geomagnetic field, B, as follows: 

M - D = A B ,  

where M and D are defined in spacecraft coordinates and B in geocentric coordinates, and A is the 
(unknown) spacecraft attitude transformation matrix. The bias D is assumed to be time indepen- 
dent in the spacecraft reference frame. The value of B is to be obtained from a geomagnetic field 
model. Obtaining B from the model requires both a Spacecraft ephemeris and the magnetometer 
measurement times. The final accuracy of the determination of D will depend on the accuracies of 
the magnetometer calibration and the geomagnetic field model (including differential errors intro- 
duced by spacecraft ephemeris errors and timing errors), as well as noise in the magnetometer 
readings. Taking the scalar product of each side of equation (1) with its transpose (noting that 
AT = A-l) results in 

M2 - 2 M T D  + D2 = B2 (2) 

Equation (2) is independent of spacecraft attitude because B2 is invariant under rotation. We have, 
however, reduced a three-component vector equation to a scalar equation. Because D has three 
components, measurements must be taken in such a way as to provide at least three linearly 
independent versions of equation (2). This can be done either by taking measurements at a number 
of positions in the orbit or by changing the spacecraft attitude. With the latter approach, it is still 
not necessary to know what the various attitudes are -- only that they are distinct from one another. 

Equation (2) may be used as the basis for constructing a least-squares loss function for use in 

solving for D. The loss function is constructed using an error variable, e;, defined by 
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where the subscript i indicates measurement number. The corresponding least-squares loss 
function, J, is given by 

J = 1/2 C wi ( ei - ei > )2 (4a) 

=1/2Cwi[(M;2 - 2MiTD + D2) -BF , (4b) 

where wi is a weight, inversely proportional to the variance of e;, associated with the ith measure- 

ment, and < ei > is the expectation value of e? The implicit assumption made in selecting equation 

(4a) as the loss function is that each ei is an independent random variable with Gaussian (or nearly 

Gaussian) distribution. If this assumption is true, then the value of D that minimizes J is the 

optimal estimate for the true spacecraft bias. Specification of the values for wi and < ei > is not 

necessarily a trivial matter. The simplest approach, of course, is to assume wi = 1 and < ei > = 0 

for all i. We present in Section III a simple analytic model from which more exact expressions for 

wi and < ei > can be derived. It is worth bearing in mind, of course, that because of the uncertain- 

ties involved in modeling errors (both in their magnitude and the form of their distribution), the 
concept of an "optimal" solution for D becomes a bit fuzzy. All solutions for D within a small 
error window about the value that minimizes J will be essentially equally valid. 

We now construct an algorithm to determine the value of D that minimizes J. Equation (3) is 
quadratic in the unknowns, i.e., in the components of D. This is awkward because it prevents 
simply applying the standard tools of linear algebra to construct a least-squares solution for the 
problem. We note, however, that if the quantity D2 on the right-hand side of equation (3) were a 
constant, then standard linear techniques would be applicable. We therefore construct a modified 

version, J,, of the loss function: 

=1/2Cwi[ (M? - 2 M T D  + Dc2 ) - B: - < e i > ]  2 , 
JC 
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where the term Dc2 is to be considered an adjustable parameter rather than a function of the 

components of D. Standard linear least-squares techniques ( e g ,  see Reference 1) may be 

used to find the value of D that minimizes J, for any specified value of Dc2; the solution is 

We may now select the value of D that simultaneously satisfies equation (6) and the constraint 

D2 = Dc2 ,  (7) 

A solution for D selected in this manner is not guaranteed to be a minimum for the loss function J. 

We do expect, however, that a vector Dc chosen to satisfy equations (6) and (7) simultaneously 

will be both a good estimate for the solution that would minimize J and a good estimate for the true 
bias. In particular, we note that in the limit of noise-free data, there exists a value of D (namely, 

the true bias) that simultaneously zeroes J and Jc'while also satisfying the constraint of equation 

(7). Because J and Jc are by definition nonnegative, a solution that zeroes them both is a minimum 

for both. It follows, therefore, that Dc will be the exact solution for D in the limit of zero noise. 

With the constraint of equation (7) applied, equation (6) can be rewritten as 

D, = U + Dc2V,  

Solving equation (8) for Dc first requires a solution for Dc2. This can be found as follows. 
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Multiplying each side of equation (8) with its transpose results in 

Dc2 = DcT Dc = UT U + 2 UT V Dc2 + VT V (Dc2 )2 . 

This can be written as a simple quadratic in Dc2 : 

y = a@c2)2 + bDc2 + c = 0 ,  

where 
a = V T V ,  
b = ( 2 U T V  - 1 ) ,  
c = U T U .  

The solutions of equation (12) are 

Dc2 = [ - b +  (b2  - 4 a c ) l n ] / 2 a .  (16) 

That the negatively signed solution is the proper solution can be demonstrated in the following 

manner. Any real solution for Dc2 must have b2 2 4ac. Parameters a and c are nonnegative 

because V and U are real vectors. From this it follows that Ibl 2 (b2 - 4ac )ID. In order that Dc2 

be nonnegative, it follows in turn that b I O .  Both solutions for Dc2 are therefore nonnegative. 

For cases in which neither bias nor measurement error exists, c = 0 and b = -1. The negatively 

signed solution is clearly required to give Dc2 = 0 for such cases. The parabola y(Dc2) defined in 

equation (12) remains the same in form &e., open upwards, with two nonnegative crossings of the 

Dc2-axis) for cases of nonzero bias and error. Any physically realizable measurement situation 

may be imagined as achieved by a continuous change through a family of situations that starts with 
zero bias and zero error. During this change, the function y, and therefore the two solutions for 
equation (16), change smoothly. The negatively and positively signed solutions of equation (1  6) 
do not merge (and therefore cannot switch places) with each other unless the family of situations 
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contains a "point" having b2 = 4ac. An incremental shift in the family to a neighboring one having 
b2 > 4ac everywhere is equally acceptable and removes the conceptual possibility of sign switching 
for the true solution. The negatively signed solution is therefore always the correct solution for 

equation (16). Equations (16) and (8) can thereby be solved to obtain Dc. 

The value of Dc may be used either as an acceptable estimate of the magnetic bias or as an initial 

estimate in an iterative algorithm to find the value of D that minimizes the loss function J. The 
iterative algorithm is as follows. D is expressed as 

D = D o + d ,  (17) 

where Do is an estimate (initially set to Dc) of D, and d is a correction to this estimate. Equation 

(3) may then be written as 

ei = (Mi2 + Do2 - 2 M F D 0  - 2 M T d  +2D0Td+ d2)  - B:. 

The loss function J becomes 

J=1/2Zw.[(M:-B;2 +Do2 -2MTD0 +d2-<ei>) - 2 ( M i - D d T d I 2 .  (19) 

Taking the gradient of J with respect to the components of d yields 

Neglecting the terms in equation (20) that are quadratic or cubic in d yields 

v J = 2 I : w .  ( (Mz-B:  +D02 - 2 M F D 0  -<ei>)d  
1 

- [ ( Mi2 - B.2 + Do2 - 2 MT Do - <ei> ) - 2 (Mi - d ] (Mi - Do) 1 , (21) 
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which may be rearranged to read 

VJ = 2 ( Y d  - Z ) ,  

where 

Y = C W ~ [ ~ ( M ~ - D O ) ( M ~ - D O ) ~  + (Mi 2 -B.2  +Do2 -2M?D, -<ei>)Z], 

Z = Z w i [ ( M ?  - B;2 + Do2 - 2 M 7 D 0  -<ei>)(Mi-Do)], 

(23) 

(24) 

and Z is the 3-by-3 identity matrix. The desired solution for d is found by setting VJ to zero and 

multiplying both sides of the resulting equation by Y-l: 

The loop is closed by adding d to Do, thus obtaining a new estimate for D. The process continues 

until d is made arbitrarily close to zero. As noted above, we expect that a solution for D obtained 

using this iterative technique should not differ significantly from Dc. 

The uncertainty, AD, associated with the estimated value of D should be of order o/NID, where 

o is the root-mean-square (rms) magnetometer measurement error, and N is the total number of 
measurements made. A more accurate estimate of the uncertainty of D can be made as follows. If 
equation (25) had resulted from a "standard" least-squares problem, i.e., one in which all measure- 
ment errors were associated with the vector 2 while the matrix Y was composed of known 

constants or model parameters, then the uncertainty AD would be given by 

AD = [ 2 J(D)/(N-l)]lDW , (26) 

with W defined as the vector with components equal to the square root of the diagonal components 
of Y-'. If all measurement errors are "extracted" from Y-', it reduces to a matrix X defined as 
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X = [ Z , W ~ ~ ( M ~ - D ) ( M ~ - D ) ~ ] - ~  

= [ C w i 2 ( A i B i ) ( A i B i )  T 3 -1 . 

We therefore take our estimate of AD to be as given by equation (26), with W defined as the square 

root of the diagonal of X. In Section 111 we give an evaluation of AD more directly comparable 

with the simple estimate o/”D.  

III. ANALYTICAL ERROR MODEL 

In this section we present a simple analytical model for the magnetometer errors and use it to 

derive expressions for the parameters wi and < ei >. We further apply this model to a simple 

observing scenario and calculate the corresponding uncertainty AD. In principle, errors associated 

with both Mi and Bi exist, the latter resulting from errors both in the geomagnetic field model and 

the spacecraft ephemeris. For simplicity, we assume here that the total error is sufficiently 

dominated by the error in Mi that the error in  Bi can be neglected. We define ri as the error vector 

associated with Mi and assume it to be composed of three independent random variables, each 

having Gaussian distribution with mean zero and variance 02. The full variance of ri is 302. 

Using this model, the variable ei is related to ri by the relation 

ei = ( M i - D i ) 2  - B? 

= ( Bi + ri)2 - BZ 

= 2 B 7 r i  + r:. 

The expectation value of ei is given by 
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< ei > = jG(ri) ei dv, 

= G(ri) ( 2 BT ri + r? ) dv, 

= G(ri) ( 2 Bi ri cos(8) + r;2 ) dv, 

= 302, 

where G(ri) is the Gaussian distribution function (proportional to exp(-r?/2$)), dv, is a volume 

element in r-space, and 8 is the angle between Bi and ri' (The integral 1 f cos(8) dv, yields zero 

for any f(ri) that is spherically symmetric.) The variance, s?, of ei is in turn given by 

si2 = G(ri) ( ei - < e. 1 > )2 dv r 

= G(ri) [ 2 Bi ri cos(0) + r: - 3 d  l2 dv, 

= G(ri) [ 4 B? r? cos2(8) + 2 Bi ri cos(8) (r? - 302) 

+ r: - 2r: (30~)  + ( 3 ~ ? ) ~ ]  dv, 

= 4/3 BF ( 3 0 ~ )  + 5 02 (302) - 2 ( 3 ~ ? ) ~  + ( 3 0 ~ ) ~  

= 2 0 2 ( 2 B ?  + 3 0 ~ ) .  (30) 

The weight wi may be set equal to si-2. We assumed for the derivation of equations (29) and (30) 

that the error in Mi dominated that in Bi. This was done for simplification and is in no way essen- 

tial. Allowing an error in Bi having components with Gaussian distribution of variance ob2 yields 

the following expressions for < ei > and s?: 

S? = 2 0 2 ( 2 B ?  + 302)  + 2 0 2 ( 2 B ?  + 3 0 2 )  + 2 ( 3 & 3 0 2 ) .  (32) 
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For illustration, we present here typical values of B, o, and ob for the specific case of the HST 

mission. The rms noise level associated with the HST magnetometers has been determined to be 
approximately 0.01 gauss (Reference 2). The geomagnetic field model to be used is the Interna- 
tional Geomagnetic Reference Field (IGRF) for 1975 (Reference 3). A typical value for B at an 
altitude of 445 kilometers is about 0.3 gauss. Typical errors to be associated with the reference 
field can be estimated on the basis of the work by Trombka and Cain (Reference 4), wherein the 
IGRF for 1975 was compared with that for 1965. The rms error at 445 kilometers was found to be 
approximately 0.002 gauss. Launch date for the HST mission is currently scheduled for June 
1989,15 years after the completion of the 1975 IGRF. Assuming linear error growth with time, 
the error to be associated with the reference field at HST launch should be about 0.003 gauss. The 
error in the estimate of the local geomagnetic field value due to spacecraft position error can be 

estimated as I(V*B)I I(AR)I, where V-B is the divergence of B, and AR is the ephemeris error for 
the spacecraft. The definitive ephemeris for the HST is expected to have an xms accuracy of 0.2 
kilometer (Reference 5). Given that the near-Earth dipole field falls off approximately as R-3, the 

magnitude of V*B can be estimated as 3 B / R,, where R, is the semimajor axis of the spacecraft 

orbit. Together these yield a field error of approximately 0.03 milligauss. The error in Bi is 

dominated by the error in the field model. The ratio c? / 02 is approximately 10, indicating that 

neglecting ob2 in equations (31) and (32) would be a reasonable approximation. 

We now use equations (26), (27b), and (30) to provide a simple expression for AD for an 
idealized observing scenario. We consider a situation in which the geomagnetic field is constant 
and the spacecraft changes attitude in such a way as to have the field aligned with each of the 

principal spacecraft axes for one-third of the measurements. For this scenario the variance si2 is the 

same for all i, and wi may be set to 1. The loss function J(D) and mamx X are then for large N 

given by 

I 

i 

J(D) = 1/2Ns2 = N d ( 2 B 2  + 3 2 ) ,  

x = (213  N B ~ I  ) - I ,  

(33) 

(34) 
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from which it follows that each component of AD is given by 

AD = [2J(D) /N] 'RW 

= [ 2 2 ( 2 B 2  + 3 c ~ ~ ) ] ~ n ( 2 / 3 N B ~ ) - ~ R  

= d N l n  61n [ 1+ ( 3 0 2 / 2 B  2 ) ]  1R . (35) 

The estimate specified above indicates that, for situations in which the measurement errors are small 
compared with the field strength, the algorithm described in this article will provide an estimate for 
the spacecraft bias that is about a factor of 61n (i.e., - 2.5) less accurate than that which could be 
obtained with the same measurements if attitude information were independently available. 

In situations where the use of the algorithm described in this article is intended as a preliminary 
calibration of the spacecraft bias, many of the details of algorithm may be neglected. As mentioned 

earlier, setting < ei > = 0 and wi = 1 is the simplest approach in practice. If B2 is fairly constant, 

as should be roughly true (to within a factor of about 4) for a spacecraft at constant altitude, then 

taking the weights for all variables ei to be equal would not be a bad approximation. It would be 

inappropriate, however, for spacecraft with highly eccentric orbits. Intuitively, it might be 

expected that neglecting < ei > could introduce errors in the solution for D of perhaps as much 

as 0. (Our numerical examples actually show this estimate to be too high.) Errors of this order are 
probably not significant for preliminary estimates. In the HST mission, for example, for which 
final spacecraft bias calibration will be performed using high-accuracy attitude information, the 

algorithm described here will be used with < ei > = 0 and wi = 1 and without iteration. 

IV. NUMERICAL EXAMPLES 

In this section we present the results of a number of numerical simulations that illustrate the 
use of the algorithm and verify its accuracy. After verifying that the algorithm obtains the exact 
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solution when no noise is added to the measurements, we ran six test scenarios using noisy data. 
Each scenario comprises K bias determinations for each of two magnetometers, with each determi- 
nation based upon N data points. Both K and N have the value 100 for all of the scenarios. The 
strength of the geomagnetic field is - 0.35 gauss in all cases, Le., typical of that experienced by a 
spacecraft in near-Earth orbit, and the true values for spacecraft bias at the two magnetometer 
locations are 

D, = ( 0.005, -0.015, O.O1O)T gauss , 

D, = (-0.170, 0.280, 0.220 )T gauss . 
(36) 

(37) 

We selected these values to test the algorithm with bias values substantially below and approxi- 
mately equal to the ambient field strength. For each scenario, we calculated the average error in 

the estimated bias (for both Dc and D) and the standard deviation of these errors for each magne- 

tometer. For calculating D, we defined convergence as Id1 < 0.001 o/”D. 

We divide the six scenarios into two groups. The scenarios in the first group (scenarios 1,2, 
and 3) all use a constant geomagnetic field. We are therefore able to compare the results of these 
scenarios directly with the analytic calculations presented in Section III. The scenarios in the 
second group (scenarios 4,5, and 6)  use a geomagnetic field constructed to simulate that which 
could be experienced by a spacecraft in near-Earth orbit. The height of the simulated orbit is 
522 kilometers; the inclination is 28.5 degrees; and the right ascension of ascending node, 
argument of perigee, and latitude at epoch time (Le., time of the first data point) are all 0 degrees. 
The geomagnetic field experienced by a spacecraft with this orbit is reasonably simulated (at least 
for our purposes) using the following parameterization: 

Bl,i = 0.01 + 0.17 cos(8i) gauss, 

B,,i = -0.19 + 0.15 sin(8.J gauss, 

B,,i = 0.20 + 0.07 sin(ei) gauss, 

where Oi = 7.2 ( i - 1) degrees. The sample spacing corresponds roughly to one data point per 
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minute over a single orbit. We present details for the individual scenarios in the following para- 
graphs and the principal numerical results in Table 1 (for scenarios 1,2, and 3) and Table 2 (for 
scenarios 4,5, and 6) at the end of this section. The specific entries in the tables are average error, 
standard deviation of the errors, estimated uncertainty based on equation (26), and for scenarios 1 
and 2 the "theoretical" uncertainty calculated using equation (35). 

Scenario 1. This scenario is a numerical execution of the idealized case described in Section ID. 
It is designed to demonstrate the algorithm's accuracy for situations where the magnetometer 

measurements are uniformly distributed. The values for the parameters B and CJ are 0.35 gauss 

and 0.0 1 gauss, respectively. As can be seen from Table 1, the magnetic bias estimates are equally 
accurate for both magnetometers, and no significant difference exists between the estimates D and 

Dc. Typically, only two iterations are required to obtain the estimate D after Dc has been deter- 

mined. The standard deviation for each of the error components is - 0.0018 gauss, in contrast to 
the "theoretical" value of - 0.0025 gauss predicted by both equations (26) and (35). This differ- 
ence may be attributable to the qualitative nature of the concept of "extracting" the measurement 
errors from the matrix Y-' that was used in deriving equation (27b). The average error in the 

estimated bias for each component of D (or Dc ) is zero to within plus or minus about twice 

1.8 o/ (N K)ID (i.e., - twice 0.00018 gauss), which is what would be expected given the 

standard deviation of the errors. 

Scenario 2. This scenario is a repetition of scenario 1, except that in this case the parameter 

< ei > is set to zero. This scenario is designed to determine whether the algorithm with this 

simplification provides results of essentially the same accuracy as does the full algorithm. This, in 
fact, proves to be the case. The standard deviation of the errors is essentially the same as for 

scenario 1 (i.e., - 1.8 CY / NID), and the average of the errors for any given component of D or Dc 

is shifted only slightly (- 0.0006 gauss) from zero. This offset, though statistically significant, is 
small compared with the typical uncertainty of - 0.002 gauss for any single determination. It 

appears that a user of the algorithm can apply the simplification of neglecting both < ei > and the 

steps of iterating between Dc and D without substantially corrupting the results of the calculation. 
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Scenario 3. This scenario is designed to investigate the observability problems that the algorithm 
encounters if an observing run with insufficient variation of the geomagnetic field is used. The 
field strength and noise levels are the same as for scenario 1, but the three attitudes used are all 
within 14 degrees of one another, Specifically, the right ascension, declination, and roll for the 
three attitudes are, in degrees, (0, 0, 0), (10, 0, 0), and (0, 10,O); and the geomagnetic field is 
directed toward sky coordinates (0,O). As shown in Table 1, component 1 of the standard 
deviation vector for the errors of D is substantially smaller (by a factor of between 7 and 9) than 
components 2 and 3. Furthermore, the same kind of ratio between components applies for the 
uncertainty estimate derived using equation (26). Despite this basic agreement (Le., propor- 
tionality) between the standard deviation vector and the uncertainty estimate, the average errors of 
the components of D are larger in size (is., offset from zero) by amounts that are statistically 
significant when compared with their expected rms size of K-'D times the standard deviation. 
This is true in particular for component 1 for magnetometer 1 and components 2 and 3 for 
magnetometer 2. Although the offsets are statistically significant, they are all still smaller than the 
corresponding standard for the given component of D. The calculation of D remains basically 
good, but significantly degraded, for this scenario. In contrast to these results for D, the bias 

estimate Dc is a poor estimate of the true bias (particularly in the case of magnetometer 2, for which 

the true bias is large). For the scenario presented here, the averages of the errors for components 

2 and 3 of Dc for magnetometer 2 are nearly 10 times as large as the rms error of a single measure- 

ment. These results emphasize the need for the user to arrange for data acquisition in a manner that 
guarantees substantial field variation in the spacecraft's frame. They further indicate that if such 
uniform data acquisition is for some reason not possible, then application of the full algorithm (i.e., 
continuing on to calculate D after Dc) is imperative. 

Scenario 4. This scenario, as well as the next two, is designed to test the algorithm using the 
more realistic geomagnetic field model described at the beginning of this section (i.e., as specified 

by equations (38) through (40) ). The parameters wi and < ei > are set in accordance with equa- 

tions (29) and (30), with CT again equal to 0.01 gauss. As can be seen in Table 2, the results for 

scenario 4 with respect to accuracy of the solution are essentially the same as those for scenario 1 

(component 3 of the error for both D and Dc for magnetometer 2 is just slightly greater than three 
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times the expected rms value). These results demonstrate that the algorithm works well for realistic 
ambient magnetic field values, as well as for the idealized cases such as scenario 1. 

Scenario 5. This scenario is a repetition of scenario 4, but with wi set to 1 and < ei > set to 0. 

This scenario is designed with the same purpose as scenario 2, i.e., to check the accuracy of the 
algorithm when it is applied with the indicated simplifications. Comparing the results of this 
scenario and those of scenario 4 indicates (as was noted for scenario 2) that a mild degradation of 
results occurs when the simplified algorithm is used, but that this degradation is quite small. In 
actual operations, use of the simplified algorithm would almost certainly be acceptable. For the 

realistic error estimate being used in these scenarios (i.e., o - 0.01 gauss), the final uncertainty in 

the bias estimate (using either D or Dc) is of order 0.003 gauss. 

Scenario 6. This scenario is a repetition of scenario 4, but with (r set to 0.1 gauss. The purpose 
is to test the robustness of the algorithm when used with very noisy data; the noise level used is 
about one-third of the ambient field strength. The algorithm requires approximately six iterations 
to converge and yields estimates for the bias with errors of order 0.04 gauss. In one case the 
algorithm failed to converge even after 10 iterations. As is clear in Table 2, the components of the 
vector of average errors are offset from zero by as much as 10 times the expected rms value. There 

is no indication that the estimate D is any better determined than is Dc. 

The basic conclusions to be the drawn from the six scenarios are that (1) the algorithm works 
very well for cases in which magnetometer noise levels are like those expected for actual spacecraft 

operations, (2) results obtained using the simplifications of setting wi to 1 and < ei > to 0 and not 

iterating beyond the first estimate D, are very nearly as good as those obtained using the full 

algorithm, and (3) the user of the algorithm should make every effort to arrange that magnetometer 
data acquisition be done in a way that provides substantial variation in all components. The results 
of scenarios 4 and 5 indicate that the kind of magnetic variation that a Spacecraft with constant 
attitude in near-Earth orbit automatically experiences over a single orbit is adequate to the needs of 
the algorithm. 
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Table 1. Statistical Results from Scenarios 1 through 3 

Magnetometer: 

Component: 

1 2 

1 2 3 1 2 3 

Scenario 1 

Average Error 0.00038 0.00038 0.00000 O.oooO8 0.00033 0.00027 
D: Standard Deviation 0.00179 0.00184 0.00182 0.00166 0.00190 0.00181 

Estimated Uncertainty 0.00242 0.00242 0.00239 0.00246 0.00246 0.00242 

Average Error 0.00037 0.00042 -0.oooO2 0.00029 -0.oooOl -0.oooOl 
Dc: Standard Deviation 0.00178 0.00183 0.00181 0.00165 0.00188 0.00182 

Estimated Uncertainty 0.00242 0.00242 0.00239 0.00246 0.00246 0.00242 

Theoretical Uncertainty 0.00246 0.00246 0.00243 0.00246 0.00246 0.00243 
................................................................................................................. 
Scenario 2 

Average Error 0.0008 1 0.0008 1 0.00043 0.0005 1 0.00076 0.00070 
D: Standard Deviation 0.00179 0.00184 0.00182 0.00166 0.00190 0.00181 

Estimated Uncertainty 0.00242 0.00242 0.00238 0.00245 0.00245 0.00242 

Average Error 0.00080 0.00085 0.00041 0.00072 0.00041 0.00042 
Dc: Standard Deviation 0.00178 0.00183 0.00181 0.00165 0.00188 0.00181 

Estimated Uncertainty 0.00242 0.00242 0.00238 0.00245 0.00245 0.00242 

Theoretical Uncertainty 0.00246 0.00246 0.00243 0.00246 0.00246 0.00243 

Scenario 3 

Average Error 0.00093 O.OOO00 -0.00127 O.OOO18 -0.00807 -0.00955 
D: Standard Deviation 0.00209 0.01530 0.01677 0.00149 0.01342 0.01386 

Estimated Uncertainty 0.00242 0.01958 0.01943 0.00235 0.01899 0.01885 

Average Error 0.00077 0.00146 -0.00150 0.01664 -0.09821 -0.09171 
Dc: Standard Deviation 0.00178 0.01265 0.01405 0.00552 0.01369 0.01398 

Estimated Uncertainty 0.00242 0.01959 0.01944 0.00295 0.02386 0.02368 

Note: All values are in gauss. 
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Magnetometer: 

Component: 

Table 2. Statistical Results from Scenarios 4 through 6 

1 2 

1 2 3 1 2 3 

Average Error -0.oooO3 0.00035 0.00032 0.00047 -0.00023 0.00077 
D: Standard Deviation 0.00272 0.00240 0.00212 0.00285 0.00243 0.00220 

Estimated Uncertainty 0.00375 0.00317 0.00292 0.00373 0.003 15 0.00290 

Average Error -0.oooO6 0.00045 0.00023 0.00097 -0.00050 0.00076 
D,: Standard Deviation 0.00270 0.00239 0.0021 1 0.00282 0.00241 0.00219 

Estimated Uncertainty 0.00375 0.00317 0.00292 0.00373 0.00315 0.00290 

Scenario 5 

Average Error -0.ooOo8 0.00056 0.00087 0.00054 0.00003 0.00128 
D: Standard Deviation 0.00270 0.00243 0.00216 0.00285 0.00244 0.00220 

Estimated Uncertainty 0.00378 0.00306 0.00323 0.00376 0.00304 0.00321 

Average Error 0.00086 0.02297 0.041 12 0.00856 0.01891 0.04873 
D: Standard Deviation 0.03783 0.03083 0.0308 1 0.04478 0.03685 0.04229 

Estimated Uncertainty 0.03798 0.03 188 0.02992 0.03749 0.03 146 0.02953 

Average Error -0.00252 0.02606 0.02527 0.03283 -0.00035 0.02891 
Dc: Standard Deviation 0.02238 0.01896 0.01700 0.02563 0.02270 0.02359 

Estimated Uncertainty 0.038 17 0.03203 0.03007 0.03847 0.03228 0.0303 1 

Note: All values are in gauss. 
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V. CONCLUSIONS 

We have presented a simple algorithm for the in-flight determination of the magnetic bias of a 
spacecraft. The algorithm, developed for use during the HST mission, is independent of any 
attitude estimates and requires no telemetry from spacecraft sensors other than the magnetometers 
at the locations where the bias is being determined. We have presented an analytical model for the 
errors in a typical observing scenario, as well as the results from a number of numerical studies 
demonstrating the general stability and accuracy of the algorithm. The algorithm works well and 
should be a useful tool for preliminary spacecraft magnetic bias determination for a variety of 
spacecraft missions. 

The work reported in this article was supported in part by NASA contract NAS 5-26685 for the 
development of ground support software for the Hubble Space Telescope mission. 
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